

Vanderbilt Astro - Starting Grad School

In order to facilitate your time as a graduate student, here are
some suggestions and tips to make your time in graduate school much easier.

In case you have any questions, please contact me via
victor.calderon@vanderbilt.edu

Contents:

	MAC 101: An Introduction

	Python 101 - Anaconda, environments, and more

	Structuring your Project

	Python Packaging - Building your own module and package

	Machine Learning

	Vanderbilt PhD Thesis - Template

	Tools you might want to check out

	Useful links and Resources

MAC 101: An Introduction

This is an introduction to the things that you should know about
your new Mac.

In this section we discuss how to properly setup your Mac, how
to SSH onto a remote computer, and more.

Table of Contents

	What your MAC should have

	Xcode

	LaTeX

	Vanderbilt VPN

	MAC Time Machine & Backup

	SSH

	SSH-Keys

	SSH Config file

	Connecting to Github

	Forwarding X11 (MACs only)

What your MAC should have

Your MAC already comes with pre-installed packages, but some of the
packages that you may need are not entirely ready to be used.
The first packages that you may need to install are the following:

Xcode

Xcode [https://developer.apple.com/xcode/] is an editor that you
can use to edit and run your scripts.

Note

In my opinion, Sublime Text [https://www.sublimetext.com/] is a
much better editor than Xcode is, because it has a lot more
integrations and feautures than Xcode does.

After having downloaded and installed Xcode, there are a few commands that
need to be run in order to let other programs run, i.e.
Xcode Command-line Tools [https://railsapps.github.io/xcode-command-line-tools.html].

You should run the following commands from the Terminal:

and verify that you’ve installed Xcode Command Line Tools successfully:

Just to be certain, verify that gcc is installed:

$ gcc --version
gcc-7 (Homebrew GCC 7.2.0) 7.2.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

For more information, read this [https://railsapps.github.io/xcode-command-line-tools.html]
to know more about Xcode Command Line Tools.

LaTeX

Another important package that you need to install whenever you get a new
MAC is LaTeX. LaTeX is a document preparation system that lets you
present your work or documents in a presentable format. LaTeX is
also used a lot by scientific journals, i.e. Astrophysical Journal [http://iopscience.iop.org/journal/0004-637X],
Monthly Notices of the Royal Astronomical Society [https://academic.oup.com/mnras].

To download LaTeX on a MAC, you need to download MacTEX.
This can be found at https://www.tug.org/mactex/.

After downloading the necessary .pkg file, you will be able to
execute and run LaTeX on your computer.

For a tutorial on how to use LaTeX, go to the links in LaTeX.

Vanderbilt VPN

Sometimes you will need to access remote servers from outside Vanderbilt.
To do this you will need to set up a VPN connections.
In order to do this, you will need to install the
Pulse Secure VPN [https://it.vanderbilt.edu/security/secure-communications/remote-access/]
client. This will will let you connect remotely to servers hosted at Vanderbilt .

MAC Time Machine & Backup

When you get a MAC, you have the option to set up
Time Machine [https://support.apple.com/en-us/HT201250]. Time Machine
lets you back up your entire computer, so that you don’t loose any
important file.

I strongly suggest buying a hard drive (>1TB) to back up all of your
files. I find the hard drives from Western Digital quite useful.
In case you’re interested, see here [https://www.wdc.com/products/personal-cloud-storage.html].

Note

It is extremely important that you back up your computer at least a few
times a week. If not, you may end up loosing a substantial amount of
files (and your work!) if your computer fails. So this should be one
of the first things that you do when having a Mac.

SSH

For most of the research being done in graduate school, one needs
to access a remote computer that have more processors, more disk space
than your computer. For this, you can SSH onto a remote
computer via the terminal.

In order to do that, you first need to do the following in the terminal

	SSH folder

$ cd $HOME
$ mkdir .ssh
$ chmod 700 .ssh

	SSH Configuration file

$ cd ~/.ssh
$ touch config
$ chmod 600 config

	Authorized_keys file

$ cd ~/.ssh
$ touch authorized_keys
$ chmod 700 authorized_keys

	Connections Folder

cd ~/.ssh
mkdir connections
chmod 700 connections

	SSH-Keys Folder

cd ~/.ssh
mkdir ssh_keys
chmod 700 ssh_keys

	Public Keys Folder

cd ~/.ssh
mkdir pub_keys
chmod 700 pub_keys

At this point, your ~/.ssh folder should look like this:

$ ls -lah ~/.ssh

drwx------ 8 user staff 256B Jan 21 18:37 ./
drwxr-xr-x@ 161 user staff 5.0K Jan 21 20:24 ../
-rw-------@ 9 user staff 288B Jan 21 18:37 authorized_keys
-rw-------@ 1 user staff 1.4K Jan 21 19:03 config
drwx------ 2 user staff 64B Jan 22 16:37 connections/
drwx------ 2 user staff 64B Jan 22 16:37 pub_keys/
drwx------ 2 user staff 64B Jan 22 16:37 ssh_keys/

Now you can access a remote computer by logging in from the terminal:

ssh username@123456.server.io

The tedious thing about this is that it will prompt you for
your password anytime that you want to access the remote server.

This can be solved by using SSH keys.

SSH-Keys

Some servers are configured to accept encryption keys in addition
to (or instead of) requiring a password. This can be more secure
since the account cannot be compromised by someone guessing passwords!

SSH keys are comprised of a public and a private key. The public
key can be given to anyone (hence the name). If you connect to a server
that has your public key and you can provide your private key, it will
let you in. (Consequently, if your private key is stolen,
someone else can log into your account!)

In order to generate SSH keys, you need to run the following:

$ cd ~/.ssh
$ ssh-keygen -t rsa -b 4096
$ Generating public/private rsa key pair.
Enter file in which to save the key (/Users/calder/.ssh/id_rsa): id_rsa_4096
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
$ ls
id_rsa_4096
id_rsa_4096.pub
$ chmod 600 id_rsa*
$ mv id_rsa_4096 ssh_keys/
$ mv id_rsa_4096.pub pub_keys

Now you can add your SSH-Keys by typing the following:

ssh-add -K ~/.ssh/ssh_keys/*

Note

The argument -K in ssh-add for adding the key to your
Keychain if you are on a MacOSX system. If not, just have the command
ssh-add ~/.ssh/ssh_keys/* to add all of the SSH-KEYS that you
have created.

From now on, you should add the private keys and their respective public
keys to the ssh_keys and pub_keys folders, and then run the
commands chmod 600 key and chmod 600 key.pub command,
replacing key with the name of the actual SSH-key.

Note

If you enter a passpharase, you will need to type that password every time
you use the ssh keys (e.g. when connecting to a server). It’s common to not
create a password, but know that if the private key is lost, anyone can use
them. (But they would have to know which server to connect to, which
“config” file will provide!)

SSH Config file

This file acts as the file with predefined options for how you connect
to numerous SSH servers.

After having created the config file in the ~/.ssh directory,
you must add the information to each of the servers that you connect to.

First, you must execute

open ~/.ssh/config

in order to open the ~/.ssh/config file.
After having opened the file, you can add global settings for how
each SSH sessions executes.
Add these lines to your config file:

Host *
ControlMaster auto
ControlPath ~/.ssh/connections/%C
ControlPersist 1m
ServerAliveInterval 30
ServerAliveCountMax 10

If you’re on a MAC and would like to use X11 as well, add
these extra lines beneath ServerAliveCountMax:

XAuthLocation /opt/X11/bin/xauth
AddKeysToAgent yes
UseKeychain yes

This will ensure that your connections don’t die, forward X11, and
save those keys to your Keychain (if applicable).

Connecting to Github

Once you have your ~/.ssh/config file setup, you can add your
Github information to it.

You would just need to add this below the code from above:

Host github.com
HostName github.com
User git
IdentityFile ~/.ssh/ssh_keys/github_key
IdentitiesOnly yes
PreferredAuthentications publickey

This will make git to use the public key github_key, which
you should have created already. If not, follow these instructions
here [https://help.github.com/articles/connecting-to-github-with-ssh/].

Forwarding X11 (MACs only)

If you happen to plot on remote servers, you might want to use XQuarts (X11)
if you’re on a Mac in order to plot. If so, you will need to add
the following line to the ~/.ssh/config file below the Host
information for the server.

ForwardX11 yes

And make sure that the XAuthLocation setting is pointing to the
correct path of xauth. This will guarantee that you don’t a problem
with rerouting your plots to X11. For more information, see
XQuartz [https://www.xquartz.org/].

Your ~/.ssh/config file should look something like this now:

Host *
ControlMaster auto
ControlPath ~/.ssh/connections/%C
ControlPersist 1m
ServerAliveInterval 30
ServerAliveCountMax 10
XAuthLocation /opt/X11/bin/xauth
AddKeysToAgent yes
UseKeychain yes

Connects to Github
Host github.com
HostName github.com
User git
IdentityFile ~/.ssh/ssh_keys/github_key
IdentitiesOnly yes
PreferredAuthentications publickey

Connects to a remote Server via SSH
Host server_name
HostName path.to.server
User username
IdentityFile ~/.ssh/ssh_keys/server_key
IdentitiesOnly yes
PreferredAuthentications publickey
ForwardX11 yes

where server is the name of the server to which you want to
connect, and path.to.server is the URL to the server. This will
use the ~/.ssh/ssh_keys/server_key SSH key to access the server
with your credentials for username username.

Python 101 - Anaconda, environments, and more

This is a small introduction of what I think you should have installed
in order to property use python in your projects.

Table of Contents

	Anaconda

	Installing Anaconda

	Managing environments

Anaconda

The very first thing for you to have is
Anaconda [https://www.anaconda.com] installed.
From their website:

With over 4.5 million users, Anaconda is the world’s most popular Python
data science platform. Anaconda, Inc. continues to lead open source
projects like Anaconda, NumPy and SciPy that form the foundation of
modern data science. Anaconda’s flagship product, Anaconda Enterprise,
allows organizations to secure, govern, scale and extend Anaconda to
deliver actionable insights that drive businesses and industries forward.

Having Anaconda installed on your computer is important, since it
allows you to not worry about installing missing dependencies,
creates environments for you projects, etc.

Installing Anaconda

The first thing is to download Anaconda. If you’re starting with
Python from scratch, it is better to start with Python 3.

You can download Anaconda from here: https://www.anaconda.com/download,
and make sure to download the Python 3 version.

Note

If you’re downloading it from the terminal, you can download the
executable from by typing:

>>> wget https://repo.continuum.io/archive/Anaconda3-5.0.1-MacOSX-x86_64.pkg /path/to/download/to/

>>> bash /path/to/download/to/Anaconda3*.sh

For more information on how to download it, go to
https://docs.anaconda.com/anaconda/install/#detailed-installation-information

Once you have downloaded Anaconda, you should be able to start using
python and iPython. You can try this by typing the following on the
terminal:

>>> which python
 /home/username/anaconda/bin/python

>>> which ipython
 /home/username/anaconda/bin/ipython

>>> ipython
 Python 3.6.3 |Anaconda custom (64-bit)| (default, Oct 6 2017, 12:04:38)
 Type 'copyright', 'credits' or 'license' for more information
 IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

Note

If you’re using a separate machine, to which you ssh, you can
install Anaconda to a specified location other than your home directory.
This is important if you are limited by the number of files in your
**home directory*, e.g. a computer hosted by
ACCRE [http://www.accre.vanderbilt.edu/].

Managing environments

When working on a project, it is really important to keep
reproducibility in mind. For example, if you were to hand me you
code, I should be able to read the documentation and understand it, as
well as running the code.

This is why creating an environment for your project is extremely
important. This is where Ananconda helps a lot. Anaconda let’s you have
your own defined environment for your project, and you can
specify which packages to include in your project.

All of the packages can be specified in an environment.yml file.
An example for such file would look like
(taken from Conda Manage Environments):

name: example-environment

channels:
 - defaults

dependencies:
 - python=3
 - anaconda
 - astropy
 - h5py
 - numpy
 - pandas
 - scipy
 - seaborn
 - pip
 - pip:
 - GitPython
 - progressbar2
 - halotools
 - sphinx_rtd_theme

You can install the desired environment example-environment by
running the command on the terminal:

>>> conda env create -f environment.yml

For more information, see
Creating an environment from an environment.yml file [https://conda.io/docs/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file].

Note

A helpful package to use is
conda-env-auto [https://github.com/chdoig/conda-auto-env] which allows
you to automatically create and activate the project environment once you
are in the directory. For more information on how to install it and
use it, see https://github.com/chdoig/conda-auto-env.

For more on environments and how to integrate them in your project,
see Structuring your Project and Editing your environment.

Structuring your Project

Now that your have a working version of python on your computer,
you can start doing research.

One of the key elements of a project is for it to be reproducible by
others. Having this in mind when you’re structuring your project will
allow others to look at your code, understand it well enough to be able
to recreate your results.

This is a short guid on 2 ways to structure your code, without having
to do much creating of documets, etc.

Table of Contents

	Cookiecutter and Folder structure

	Data Science - Cookiecutter

	Personal version - Cookiecutter

	Createing your own Project using Cookiecutter

	To start a new project

	The resulting directory structure

	Editing your environment

	Adding your Project repository to Github

	Documentation for your new project

	Continuous Integration for your Project

	Links and Resources

Cookiecutter and Folder structure

Cookiecutter [https://github.com/audreyr/cookiecutter] is a command-line
utility that creates projects from cookiecutters (project templates),
e.g. Python package projects, LaTeX documents, etc.

Cookiecutter has been widely used for many projects, and each team and
organization can create their own template. For more information,
visit the
cookiecutter documentation [https://cookiecutter.readthedocs.io/en/latest/].

As the famous say goes:

Don’t reinvent the wheel!

You can always create your own folder and file structures, and organize
your documents the old-fashioned way. The problem with this is that
it may vary from project to project, and it will be more difficult to
be consistent and effective throught your projects.

For this reason, I rely on cookiecutter templates to create the
file and folder structure of a project.

There are many different cookiecutter templates out there, but
after trying to find the best one that suits my needs in research and
programming, I found one that works great! And after some modifications,
I came up with a version of this template.

These two templates are shown in Data Science - Cookiecutter and
Personal version - Cookiecutter.

Data Science - Cookiecutter

Cookiecutter Data Science [https://drivendata.github.io/cookiecutter-data-science/] is best described as

A logical, reasonably standardized, but flexible project structure for
doing and sharing data science work.

This folder structure allows everyone looking at your code to understand
it right away. It also provides many different functions (as part of a
Makefile) that simplify the workflow of your project.

In a nutshell, this cookiecutter includes:

	A Makefile file with **useful functions.

	Documentation to make your project easily accessible and readable

	And more!

In order to use this template, you follow the documentation in
Cookiecutter Data Science [https://drivendata.github.io/cookiecutter-data-science/].

Personal version - Cookiecutter

If you need more than the normal Data Science Cookiecutter template, you can
use my version. Some of the differences are:

	It includes and easy-to-use environment.yml file that makes it easy to
install dependencies.

	Extra functions in the Makefile.

	Choice of what kind of documenation to use. One has the option choose from
traditional Read The Docs [https://readthedocs.org/dashboard/] style or
the Astropy Sphinx Theme [https://github.com/astropy/sphinx-astropy].

You can check how these two styles look like:

	[image: Documentation Status] [https://test-cookieproj-rtd.readthedocs.io/en/latest/?badge=latest] - Read The Docs Version

	[image: Documentation Status] [https://test-cookieproj-astropy.readthedocs.io/en/latest/?badge=latest] - Astropy Version

Next, you can create your own Project based on this cookiecutter version

Createing your own Project using Cookiecutter

The first thing to do is to install cookiecutter

$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter

To start a new project

To start a new project, type the following:

$ cookiecutter https://github.com/vcalderon2009/cookiecutter-data-science

If you want the default project scheme from DrivenData (see above), run:

cookiecutter https://github.com/drivendata/cookiecutter-data-science

Depending on what kind of folder structure you want, you might want to choose from the different types.

After running this command, you will be prompted some questions regarding
the parameters for the project.

The resulting directory structure

The directory structure of your new project looks like this:

├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── environment.yml <- The Anaconda environment requirements file for reproducing the analysis environment.
│ This file is used by Anaconda to create the project environment.
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ │
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org

Editing your environment

Now that you have a working proect from cookiecutter, you can start by
editing the environment of your project.

If you downloaded my version of cookiecutter, you should be able to edit
the environment.yml file. This file states which packages
need to be installed by Anaconda and pip in order to run the
scripts of the package.

The environment.yml file looks like the following:

name: name_of_environment

channels:
 - defaults

dependencies:
 - python>=3.6
 - ipython
 - anaconda
 - astropy
 - h5py
 - numpy
 - pandas
 - scipy
 - seaborn
 - pip
 - pip:
 - GitPython
 - progressbar2

You can edit the environment.yml file to include/exclude packages
needed by your project.

After having edited the list of packages needed by your project, you can
execute the command

$ make environment

to create the environment.

If you have done this step before, and you want to update the environment,
you need to run

$ make update_environment

instead.

Adding your Project repository to Github

If you follow the instructions from above, you should have

	Downloaded the repository

	Created your own project with the desired file and folder structure

	Created your working environment for you project

The next step is to add it to Github [https://github.com/] and make
it accessible.

To do this, your should do the following:

	Create a Github repository with the same name as the repository.

	Type git add remote origin git@github.com:<username>/<project_name>.git.
In here you need to replace <username> and project_name with
your details.

	git push origin master - This will push your project to Github.

To check that you did this correctly, type

git remote -v

and you should get something that looks like this:

origin https://github.com/<username>/<project_name>.git (fetch)
origin https://github.com/<username>/<project_name>.git (push)

where username and project_name pertain to your repository on
Github.

Now all of the files are online on Github, and should be ready to integrate
them with Read The Docs [https://readthedocs.org/].

Documentation for your new project

Now that you have both a working local and online copy of your code,
the next step is to create the documentation for the project.

For this, you can easily use Read The Docs [https://readthedocs.org/] (RTD).

You need to do the following:

	Create an account on “Read the Docs”

	Go to your Profile and select My Projects

	From there, you should import the repository manually (it’s easier).
Click on Import a Project and follow the instructions.

	You should add the project with the same name as the Github Repo if
possible. Otherwise, you might need to change the links to the badges
on the README.md files in the project, among others.

	Make sure that the repository was correctly built by looking at the
Builds and see that it compiled correctly. If not, it should tell you
if there was an error and what the error was.

	Now you go and change the documentation depending on the project’s needs.

Continuous Integration for your Project

Continuous integration deals with testing your code for possible errors,
and making sure that everything is working as expected. Depending on
your project’s needs.

This template includes a .travis.yml, which the files used by
Travis CI [https://travis-ci.org/]. Travis CI is a Continuous integration
platform for testing your code, and checking the functionality of your
project.

More to come!

Links and Resources

For more information on, you can take a look at Code Structure
for links and resources on how to structure your code and more.

Python Packaging - Building your own module and package

Table of Contents

	Introduction

	Initial Setup

	Astropy Template

	Installing Astropy Package

	Setting up Continuos Integration

	Documentation and Read the Docs

	PyPackage Template

	Resources and further reading

Introduction

Each project requires its own different functions, definitions, etc.
But most of the times, you will be recycling over old code, over and over,
and you will have many duplicates of the same code laying around.

This is why it’s important to know how to build your own python module.

This is a small tutorial on how to property setup your module, and
about some of the very useful tools that you can use in order to

	Test your module for errors (Travis CI)

	Keep your documentation up to date (ReadTheDocs)

	and more.

Initial Setup

In order to construct your package, you first need to setup your package
with the following folder structure:

your_package/
 LICENSE.txt
 README.txt
 setup.py
 package_name/
 __init__.py

As you can tell, there’s a file named __index__.py. This file tells
Python to treat this directory as a module/package. Without
this file, Python will not understand that your building a package, and
will not link the files properly.

There are many different ways to create a Python module.
I prefer to use cookiecutter [https://github.com/audreyr/cookiecutter].
Cookiecutter is a command-line utility that creates projects from cookiecutters
(project templates), e.g. creating Python package project from a Python
package project template. For more information on cookiecutter, see
https://github.com/audreyr/cookiecutter .

For creating a Python project, there are different methods.
But I prefer these two methods:

	Astropy Template [https://github.com/astropy/package-template]

	PyPackage [https://cookiecutter-pypackage.readthedocs.io/en/latest/]

Depending on what kind of package you intend to produce, the Astropy
Template or PyPackage should be enough for creating a new Python package.

Astropy Template

This template is powered by the Astropy Project [http://www.astropy.org/].
After answering a few questions, this project will create the folder structure
for your new Python Package.

Installing Astropy Package

To first install the Astropy Template, you need to run:

conda install -c conda-forge cookiecutter gitpython

or:

pip install cookiecutter gitpython

This will instal the necessary dependencies of cookiecutter. Now
you can go ahead and run the following commands to create the structure of
your Python package:

cd /path/to/new/Python/Package
cookiecutter -c cookiecutter gh:astropy/package-template

This will prompt you with a series of questions about your project.
For a full list of the different options during Setup, see
Options during Setup [http://docs.astropy.org/projects/package-template/en/latest/options.html#options].

Setting up Continuos Integration

After having created the folder structure of the new Python structure,
it is advisable to use continous integration to ensure that all of the
modules and functions are behaving the way they are supposed to.

The Astropy Template comes with easy-to-use files that you can modify
to use with Travis CI [https://travis-ci.org/] and other CI clients.

For more information on CIs and how to use them, see
Setting up Continous Integration [http://docs.astropy.org/projects/package-template/en/latest/nextsteps.html#setting-up-continuous-integration] .

Documentation and Read the Docs

PyPackage Template

Resources and further reading

This is a small list for further reading

	The Hitchhiker’s Guide to Packaging [https://the-hitchhikers-guide-to-packaging.readthedocs.io]

	Python Packaging User Guide [https://packaging.python.org/]

	Astropy Package Template [http://docs.astropy.org/projects/package-template]

Machine Learning

Table of Contents

	Why machine learning?

	ML algorithms

	Supervised Machine Learning

	Unsupervised Machine Learning

	Papers that have used ML

	Cosmology and Galactic astronomy

	Stellar Astrophysics

	Observational Astronomy

Why machine learning?

The idea of machine learning (ML) is not new, but ML has become a tool
that many astronomers are using at their analysis.

It has been used to:

	Predict the photometric redshifts of distant galaxies

	Determine HI richness of galaxies

	Classify galaxy morphologies, i.e. ellipticals, disky, barred, etc.

	and many other applications.

Machine learning has definitely started to change the field of astronomy
and astrophysics. This is the reason for why it is important to
properly understand how to get the best results for a ML project.

ML algorithms

There are two main types of ML algorithms, i.e. supervised and
unsupervised. The first type is mainly used for classification problems,
while the second one is mainly used for clustering problems.

Supervised Machine Learning

Supervised machine learning refers to the prediction of
labels (classification) or values (regression) based on a
previous knowledge of the data, i.e. the user know the truth of
each observation, and tries to make an educated guess of for
unobserved data based on a training process with data.

Unsupervised Machine Learning

Papers that have used ML

This is a list of a few papers that have used machine learning and
deep learning to study astrophysical phenomena.

Cosmology and Galactic astronomy

Stellar Astrophysics

Observational Astronomy

Vanderbilt PhD Thesis - Template

[image: Documentation Status]
 [https://cdn.rawgit.com/VandyAstroML/Vandy_Starting_Grad_School/53e75f2c/docs/source/documents/phd_thesis/thesis.pdf]Whenever you’re getting close to finishing your Ph.D., you will eventually
have to start writing up your dissertation. There are many templates
out there, but there has been one template passed around between
Astronomy graduate students at Vanderbilt from generation to generation.

Now, it’s even easier to start writing your dissertation if you
follow the following steps:

Steps to take to write your dissertation

The dissertation can be found at: Vanderbilt Astro PhD Template [https://github.com/VandyAstroML/Vanderbilt_Astro_PhD_Template]

This template is easy to use, and you only need to answer some questions.

Downloading Vanderbilt PhD Thesis

You first need to run:

cd /path/to/where/main/thesis/will/be/
pip install cookiecutter
cookiecutter https://github.com/VandyAstroML/Vanderbilt_Astro_PhD_Template

This will install the necessary packages and directories for the PhD Thesis.

Note

Make sure you cd into the correct path. Otherwise, you will
be downloading the repository wherever.

Downloading Vanderbilt PhD Thesis

Next, it will prompt you for some answers.
The different prompts are:

	Question

	Description

	thesis_title

	Title of the thesis. Should not have ‘_’ symbols in
it.

Examples:

	Understanding Exoplanets and Other Variable Sources

	The Clustering of Galaxies on the Smallest Scales
Across Cosmic Time

	first_name

	Author’s first name. first_name will used
for the title page of the dissertation.

Examples:

	Adam

	Rose

	last_name

	Author’s last name. last_name will used for the title page
of the dissertation.

Examples:

	Calderon

	Piscionere

	repo_name

	Name of the directory/repository, in which the thesis will be saved.

This name is selected by default, but can be changed.

This field should not contain spaces.

Examples:

	Calderon_Victor_Astro_PhD_Thesis

	Szewciw_Adam_Astro_PhD_Thesis

	add_signatures

	Option for adding signatures to the thesis.

Options:

	“y” … Add signatures

	“n” … Do not add signatures

	department_name

	Name of the department. Default: Physics and Astronomy.
Should not contain ‘_’ (underscores) symbols.

Examples:

	Physics and Astronomy

	Name of another department

	dissertation_date

	Date of the Dissertation presentation.
Format: Month Year.

Examples:

	May 2019

	August 2020

	name_committee_1

	First and last name of the committee member 1.
Should not have ‘_’ symbols in it.

Examples:

	Keivan Stassun

	Andreas Berlind

	name_committee_2

	First and last name of the committee member 2.
Should not have ‘_’ symbols in it.

Examples:

	Keivan Stassun

	Andreas Berlind

	name_committee_3

	First and last name of the committee member 3.
Should not have ‘_’ symbols in it.

Examples:

	Keivan Stassun

	Andreas Berlind

	name_committee_4

	First and last name of the committee member 4.
Should not have ‘_’ symbols in it.

Examples:

	Keivan Stassun

	Andreas Berlind

	name_committee_5

	First and last name of the committee member 5.
Should not have ‘_’ symbols in it.

Examples:

	Keivan Stassun

	Andreas Berlind

Writing the Thesis

Once you’ve downloaded the repository and answered all of the questions,
you can start writing your thesis.

My advice would be to follow these steps to guarantee that you’re doing it
correctly:

	Create a new repository on Github [http://www.google.com].
This will be the repository for your newly created local repository.

	git init your local repository.

	Follow the instructions to upload the files of your dissertation to Github.

	Write your dissertation.

After having downloaded and answered the questions, the repository should look like this:

Calderon_Victor_Vanderbilt_Astro_PhD_Thesis/
├── Bibliography
│ └── bibliography.bib
├── Chapters
│ ├── acknowledgments.tex
│ ├── appendix_A.tex
│ ├── chapter_1.tex
│ ├── chapter_2.tex
│ ├── chapter_3.tex
│ ├── chapter_4.tex
│ ├── dedication.tex
│ ├── future_work.tex
│ ├── introduction.tex
│ └── titlepage.tex
├── Extras
│ ├── commands.tex
│ ├── headings_settings.tex
│ └── packages.tex
├── Figures
│ ├── project_1
│ ├── project_2
│ └── project_3
├── Makefile
├── README.md
├── Thesis
│ └── thesis.tex
└── requirements.txt

8 directories, 18 files

This is the file structure after downloaing the repository.

The main file of the repository is: Thesis/thesis.tex.
This is the file that will get compiled by LaTeX, and will produce a PDF
version.

The only files that you will need to edit (aside from thesis.tex)
are located in the Chapters directory. These are the ones
that you need to edit.

Compiling your Thesis

This repository includes a Makefile. This file serves as the file
that will make the cleaning, compiling, and opening the pdf of the
thesis.tex file.

To show all of the options of the Makefile, write:

make show-help

This will show you a list of options:

./Calderon_Victor_Vanderbilt_Astro_PhD_Thesis: make show-help
Available rules:

all Perform all tasks
clean Clean all unnecessary latex-related files
open_pdf List all unnecessary files
thesis.tex Compiles Main Thesis file

To compile your thesis, you will need to run the following commands:

make all

or

make thesis.tex

This will create all of the necessary files for compiling your thesis.

To open the PDF version of the thesis, run:

make open_pdf

and a PDF version of the thesis.tex file will pop up.

Note

In order to properly use the Makefile and compile thesis.tex,
you will need latexmk installed. If you’re on a MAC, you want
to check out the Latexmk documentation [https://mg.readthedocs.io/latexmk.html],
and make sure to have MacTex [https://www.tug.org/mactex/] installed
on your computer.

An example of the resulting PDF can be found in:

[image: Documentation Status]
 [https://cdn.rawgit.com/VandyAstroML/Vandy_Starting_Grad_School/53e75f2c/docs/source/documents/phd_thesis/thesis.pdf]

Tools you might want to check out

Table of Contents

	Introduction

	htop - An interactive viewer for Unix

	htop Explained

	Further Reading

	tmux and screen - Terminal Multiplexers

	Screen

	Tmux

	Crontab

	Whole Tale

Introduction

There are tools out there that can make your workflow much, much smoother.
This is a small list of some of the tools that I’ve found useful throughout my
stay at Vanderbilt. They have significantly improved my workflow, and
have made the projects much easier to understand.

htop - An interactive viewer for Unix

For viewing which processes are running on your computer and how much
memory is left, I like to use htop [https://hisham.hm/htop/].

This application, as shown in

[image: htop running in the terminal]
Figure 1.1: htop running in the terminal.
Credit: Wikipedia [https://en.wikipedia.org/wiki/Htop#/media/File:Htop.png]

This tool is extremely useful when running multiple jobs, since it lets
you see which jobs are running, for how long they’ve been running, and
more. Figure Fig-1.1 how htop looks whenever you run this
from the terminal:

htop

htop Explained

htop has different things to offer. Figures Fig-1.2 and
Fig-1.3 explain what each column means.

[image: _images/htop_top.png]
Figure 1.2: Top of htop. This figure shows the different components in the
upper part of htop.
Credit: CodeAhoy [https://codeahoy.com]

And the bottom part …

[image: _images/htop_bottom.png]

Further Reading

For a more in depth discussion of the different sections of htop,
see:

	htop Explained Visually [https://codeahoy.com/2017/01/20/hhtop-explained-visually/]

	Understanding and using htop monitor system resources [http://www.deonsworld.co.za/2012/12/20/understanding-and-using-htop-monitor-system-resources/]

	htop Explained [https://peteris.rocks/blog/htop/]

tmux and screen - Terminal Multiplexers

Two other great tools that you should get familiar with are:

	screen - GNU Screen [https://www.gnu.org/software/screen/]

	tmux - Github Tmux [https://github.com/tmux/tmux]

These two tools are essential when working on the terminal for a long time.
Assume you have a script that takes a long time to complete. If you dedice
to go for dinner, or leave school to go home, you would have to stop the script
since it wouldn’t be running anymore.

Screen

The screen program allows you to multiple virtual windows in Unix.

Some of the features of screen are (from this page [https://kb.iu.edu/d/acuy]):

	
	If your local computer crashes or you lose the connection, the processes or login sessions you establish through screen don’t go away

	
	You can resume your screen session with the command: screen -r

	In some cases you may have to manually detach your screen session before resuming it.

	The screen program creates multiple processes instead of multiple Unix login sessions, which means that it is resource-efficient.

	You can cut and paste between different screens without using a mouse. Thus, you don’t need to be on a computer with a windowing environment such as macOS, Windows, or the X Window System.

	It has a block copy feature which is similar to the kill rectangle feature of Emacs.

	You can copy and paste more than one page at a time, which you cannot do with some clients. You can scroll up more than one page, depending on how many scrolling lines you have set with the -h option.

	Using the detach feature, you can save screen processes when logging out and resume where you left off, saving the trouble of restarting them.

A useful set of commands for using screen are:

	Command

	Purpose

	Ctrl-a c

	Create new window (shell)

	Ctrl-a k

	Kill the current window

	Ctrl-a w

	List all windows (the current window is marked with “*”)

	Ctrl-a 0-9

	Go to a window numbered 0-9

	Ctrl-a n

	Go to the next window

	Ctrl-a Ctrl-a

	Toggle between the current and previous window

	Ctrl-a [

	Start copy mode

	Ctrl-a]

	Paste copied text

	Ctrl-a ?

	Help (display a list of commands)

	Ctrl-a D

	Power detach and logout

	Ctrl-a d

	Detach but keep shell window open

For some useful tutorials, see:

	In Unix, what is screen, and how do I use it? [https://kb.iu.edu/d/acuy]

	Learn to use screen, a terminal multiplexer [https://dev.to/thiht/learn-to-use-screen-a-terminal-multiplexer-gl]

Tmux

For further reading and tutorials, see these:

	A Gentle introduction to tmux [https://hackernoon.com/a-gentle-introduction-to-tmux-8d784c404340]

Crontab

Whole Tale

Useful links and Resources

This is a set of useful links and resources that might make your
days as a graduate student much more comfortable.
It includes links related to science, coding, machine learning, etc.

Table of Contents

	General

	MAC-related (if applicable)

	Reading Papers

	Giving Presentations

	Paper Management

	Taking Notes

	Collaborations

	Conferences

	General Learning

	Python & Anaconda

	Interesting Python Packages

	Python Packaging

	Code Editors

	Code Structure

	Version Control

	SSH Keys

	LaTeX

	Writing Papers

	Online Presentations

	Data Science

	Machine Learning

	Papers

	Interesting Books

	Jobs and Applications

	Miscellaneous Links

General

	Vanderbilt University [http://www.vanderbilt.edu/]

	Vanderbilt Astronomy Group [http://as.vanderbilt.edu/astronomy/]

	Journal Club - Schedule [https://as.vanderbilt.edu/astronomy/category/journal-club/]

	AstroBrew Schedule [https://as.vanderbilt.edu/astronomy/category/astrobrew/]

	Vandy Astronomy - Workshops and Seminars [https://vandyastroml.github.io] - Main Website for the Astronomy Workshops and Seminars at Vanderbilt

MAC-related (if applicable)

	Setting up a MAC [http://www.astrobetter.com/wiki/Wiki+Home]

	Apps for MACs [http://www.astrobetter.com/wiki/tiki-index.php?page=Mac+Apps]

Reading Papers

	ADS [http://adswww.harvard.edu/]

	ADS 2.0 Beta [https://ui.adsabs.harvard.edu/]

	arxiv astro-ph [https://arxiv.org/archive/astro-ph]

	Vanderbilt VoxCharta [http://vanderbilt.voxcharta.org/] - ArXiv discussion of the latest astronomy papers

	Arxiver [http://arxiver.moonhats.com/] - Bringing you the latest astronomy papers uploaded to astro-ph

	Astrobites [https://astrobites.org/] - The astro-ph reader’s digest

	Astrobitos [https://astrobitos.org/] - Spanish version of Astrobites

	Daily Brew [http://www.astronomy.ohio-state.edu/Coffee/coffee.html] - Selected astro-ph abstracts for Astro

	Benty Fields [https://www.benty-fields.com/] - Selected papers to use. It uses ML to suggest you new papers.

	AAS Nova [http://aasnova.org/] - Research highlights from the journals of the American Astronomical Society

Giving Presentations

	Speak your science: How to give a better conference talk, Part 1 [https://astrobites.org/2018/02/10/speak-your-science-part-1/]

	Speak your science: How to give a better conference talk, Part 2 [https://astrobites.org/2018/02/17/speak-your-science-part-2/]

	Giving a Scientific Talk [http://as.vanderbilt.edu/astronomy/manage/wp-content/uploads/2012/01/ajc_scientific_talk_pointers.pdf]

Paper Management

	Mendeley [https://www.mendeley.com/]

Taking Notes

	Evernote [https://evernote.com/]

	OneNote [https://www.onenote.com/]

Collaborations

	Slack [https://slack.com/]

Conferences

	Python in Astronomy [http://openastronomy.org/pyastro/]

	Canadian Astronomy Data Centre [http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/meetings/]

	Conference Management Software for Astronomy [https://www.conference-service.com/conferences/gravitation-and-cosmology.html]

General Learning

	The Tech Savvy Mission [https://techsavvyastro.io/] - Empowering Researchers

	Coursera [https://www.coursera.org/] - Free Online Courses

	EdX [https://www.edx.org/] - Free Online Courses

	World Science U [http://www.worldscienceu.com/]

	World Science Festival [https://www.worldsciencefestival.com/]

	TED Talks [https://www.ted.com/]

	DataGeekette - Walkthrough for Aspiring Data Scientists [https://datageekette.com/]

Python & Anaconda

	Python Course [https://www.codecademy.com/learn/learn-python] by Codecademy

	Learn Python the Hard way [http://learnpythonthehardway.org/] - Free online course on Python

	Anaconda and Python [https://www.anaconda.com/]

	Scientific Python Lectures [https://github.com/jrjohansson/scientific-python-lectures]

	The Hitchhiker’s Guide to Python [http://docs.python-guide.org/en/latest/] - Useful guide to use when using Python. Both for novice and experty Python developers.

	The Hitchhiker’s Guide to Packaging [https://the-hitchhikers-guide-to-packaging.readthedocs.io] - Useful guide to know how to package your Python modules.

	Astro ML [http://www.astroml.org/] - Machine Learning and Data Mining for Astronomy

	Cython Tutorial [https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html]

	iPython in Depth Tutorial [https://github.com/ipython/ipython-in-depth]

	Python for Scientists Tutorial [https://astrofrog.github.io/py4sci] - Set of lecture notes by Thomas Robitaille [http://www.thomasrobitaille.com/]

Interesting Python Packages

	Halotools [https://halotools.readthedocs.io]

	Astropy [http://www.astropy.org/]

	Pandas [https://pandas.pydata.org/] and Tutorial [https://www.tutorialspoint.com/python_pandas/] - Another tutorial [https://tomaugspurger.github.io/modern-1-intro]

	Scikit-Learn [http://scikit-learn.org/]

	Astropy - Affiliated Packages [http://www.astropy.org/affiliated/]

	Corrfunc - Blazing fast correlation functions on the CPU [https://github.com/manodeep/corrfunc]

Python Packaging

	Astropy Template for Python Packages - Github [https://github.com/astropy/package-template] and its documentation [http://docs.astropy.org/projects/package-template/en/latest/]

	How to create and maintain a Python package using the Astropy template [http://docs.astropy.org/en/stable/development/astropy-package-template.html]

	Cookiecutter template for a Python package [https://github.com/audreyr/cookiecutter-pypackage] - I actually prefer the Astropy Template because of how easy it is to set up.

	The Python Package Index (PyPi) [https://pypi.org/]

	Read The Docs [https://readthedocs.org/dashboard/] - Create custom documentation for your package and project for free. See Astropy_Template_rtd_subsec for more info.

	Travis CI (Continuous Integration) [https://travis-ci.org/] - Used for Continous Integration. For more information, see Astropy_Template_continous_integrations_subsec.

Code Editors

	Sublime Text 3 [https://www.sublimetext.com/]

	Sublime Text Unofficial Documentation [http://docs.sublimetext.info/]

	PyCharm [https://www.jetbrains.com/pycharm/]

	Atom Editor [https://atom.io/] - Similar to Sublime Text.

	VIM for Beginners [https://computers.tutsplus.com/tutorials/vim-for-beginners--cms-21118]

Code Structure

	How to structure your code property [https://drivendata.github.io/cookiecutter-data-science/]

	Markdown CheatSheet [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet]

	Restructured Text (reST) CheatSheet [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst]

	Create Documentation with RST, Sphinx, Sublime, and GitHub [https://sublime-and-sphinx-guide.readthedocs.io/en/latest/]

	An introduction to Sphinx and Read the Docs for Technical Writers [http://ericholscher.com/blog/2016/jul/1/sphinx-and-rtd-for-writers/]

Version Control

	Github [https://github.com/]

	Github Guides and Tutorials [https://guides.github.com/]

	Git tutorials and training [https://www.atlassian.com/git/tutorials/] by Atlassian

	Bitbucket [https://bitbucket.org/]

SSH Keys

	How to Set up SSH Keys [https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2]

	Connecting to Github with SSH [https://help.github.com/articles/connecting-to-github-with-ssh/]

LaTeX

	Installing LaTeX [http://www.astrobetter.com/blog/2010/07/06/install-latex/]

	Learn LaTeX in 30 minutes [https://www.sharelatex.com/learn/Learn_LaTeX_in_30_minutes]

Writing Papers

	Overleaf [https://www.overleaf.com/] - Collaborative Writing and Publishing

	ShareLatex [https://www.sharelatex.com/] - Another tool for Collaborative Writing and Publishing

	Acknowledgment Generator [https://astrofrog.github.io/acknowledgment-generator/] - Easy way to write the __Acknowledgement section of a paper

Online Presentations

	Frank van den Bosch Lectures [http://campuspress.yale.edu/vdbosch/presentations/] or here [http://www.astro.yale.edu/vdbosch/Presentations.html]

	Frank van den Bosch - Video Lectures [http://campuspress.yale.edu/vdbosch/teaching/video-lectures/]

	Galaxy Formation Conferences - Lectures and Videos [http://astro.dur.ac.uk/Gal2011/talks.php]

Data Science

	Kaggle Learn [https://www.kaggle.com/learn/overview] - Faster Data Science Education

	Astronomy and Data Science Toolkin [https://datascience.astro4dev.org/] - Connecting Astronomers and Data Science

	12 things I wish I’d known before starting as a Data Scientist [https://medium.com/deliberate-data-science/12-things-i-wish-id-known-before-starting-as-a-data-scientist-45989be6300e]

Machine Learning

	Vanderbilt Astro Machine Learning group [https://vandyastroml.github.io/]

	AstroML [http://www.astroml.org/]

	AstroML Book [https://press.princeton.edu/titles/10159.html] or on Amazon [https://www.amazon.com/Statistics-Mining-Machine-Learning-Astronomy/dp/0691151687]

	Machine Learning Course [https://www.coursera.org/learn/machine-learning/] by Andrew Ng (Stanford)

	Victor Lavrenko’s playlist [https://www.youtube.com/user/victorlavrenko/playlists] on machine learning tutorials

	Introductory Applied Machine Learning [https://www.coursera.org/learn/python-machine-learning]

	Udacity’s Deep Learning course [https://www.udacity.com/course/deep-learning--ud730]

	Intro to Random Forests [https://goo.gl/yYSAEi] - Good introduction to the topic of Random Forests in machine learning

	Data Science Learning Resources [https://www.datasciencecentral.com/profiles/blogs/data-science-learning-resources] - Curated list of resources to learn machine learning

	Essentials of Machine Learning Algorithms (with Python and R Codes) [https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/] - Nice explanation of ML concepts and algorithms

	TensorFlow tutorial [https://github.com/dfm/tf-tutorial] - Non-traditional TensorFlow tutorial by Daniel Foreman-Mackey [https://github.com/dfm]

	Essential libraries for Machine Learning in Python [https://medium.freecodecamp.org/essential-libraries-for-machine-learning-in-python-82a9ada57aeb]

	VIP Cheatsheets for Stanford CS 230 Deep Learning [https://github.com/afshinea/stanford-cs-230-deep-learning] and in other languages [https://github.com/shervinea/cheatsheet-translation]

	Best Machine Learning resources [https://medium.com/machine-learning-for-humans/how-to-learn-machine-learning-24d53bb64aa1]

Papers

	Good Enough Practices in Scientific Computing [http://arxiv.org/abs/1609.00037] by by Greg Wilson et al. (2016)

	“Ten Simple Rules for Making Research Software More Robust” [https://arxiv.org/abs/1610.04546] by Morgan Taschuk et al. (2017)

	Interactive Notebooks: Sharing the Code [http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261] by Helen Shen

Interesting Books

	The Cosmic Web [https://www.amazon.com/Cosmic-Web-Mysterious-Architecture-Universe/dp/069115726X] by Gott

	Statistics Books by astronomers and physicists [http://astrostatistics.psu.edu/castbib/Bib_physbks.html]

	Practical Statistics for Astronomers [https://www.amazon.com/Practical-Statistics-Astronomers-Cambridge-Observing/dp/0521732492]

	Galaxy Formation and Evolution [http://www.cambridge.org/us/academic/subjects/physics/astrophysics/galaxy-formation-and-evolution-1?format=HB] by Mo, van den Bosch, and White

	Extragalactic Astronomy and Cosmology [https://www.amazon.com/Extragalactic-Astronomy-Cosmology-Peter-Schneider/dp/3642069711] by Peter Schneider

	Introduction to Cosmology [https://www.amazon.com/Introduction-Cosmology-Barbara-Ryden/dp/0805389121/ref=pd_sim_14_1?ie=UTF8&dpID=41E27ZCFRKL&dpSrc=sims&preST=_AC_UL160_SR130,160_&psc=1&refRID=Q3QMV7G3AF4RG508TDM6] by Barbara Ryden or the PDF version [http://atlas.physics.arizona.edu/~kjohns/downloads/lsst/Ryden_IntroCosmo.pdf]

	An Introduction to Modern Astrophysics [https://www.amazon.com/Introduction-Modern-Astrophysics-2nd/dp/0805304029] by Bradley Carroll

Jobs and Applications

	Astronomy - Rumor Mill [http://www.astrobetter.com/wiki/Rumor+Mill]

	The Grad Cafe [https://thegradcafe.com/] - Grad School Admissions Results, Tips, Forums, etc.

	AAS Job Register [https://jobregister.aas.org/] - Find and post astronomy related jobs

	Benti-Fields Job Market [https://www.benty-fields.com/job_market]

Miscellaneous Links

	Badge Creator [https://shields.io/] - Tool to create badges for your Github repositories.

	Guide to Science Policy - Astrobites [https://astrobites.org/guides/guide-to-science-policy/]

Index

 _images/htop.png
2.021 Tasks: 16 total, 1 running

13/123MB1 Load average: 0.37 .12 0.04
0/109MB1 Uptine: 00:00:50

PID USER PRI NI UIRT RES SHR S CPUx MEMz TIME+ Command
3692 per 15 0 2424 1204 980 R_2.0

1 root 16 0 2952 1852 532 S 0.0 1.5 0:00.77 /sbin/init
2236 root 20 4 2316 728 472S 0.0 0.6 0:01.06 /sbin/udevd —-daem
3224 dhcp 18 2 2412 552 2445 0.0 0.4 0:00.00 dhclient3 -e IF_ME
3488 root 18 0 1692 516 448 S 0.0 0.4 0:00.00 /sbin/getty 38400
3491 root 18 0 169 520 448 S 0.0 0.4 0:00.01 /sbin/getty 38400
3497 root 18 0 169 516 448 S 0.0 0.4 0:00.00 /sbin/getty 38400
3500 root 18 0 1692 516 448 S 0.0 0.4 0:00.00 /sbin/getty 38400
3501 root 16 0 2772 119 936 S 0.0 0.9 0:00.04 sbin/login -
3504 root 18 0 169 516 448 S 0.0 0.4 0:00.00 /sbin/getty 38400
3539 syslog 15 O 1916 704 564 S 0.0 0.6 0:00.12 /sbin/syslogd -u s
3561 root 18 0 1840 536 444 S 0.0 0.4 0:00.79 sbinsdd bs 1 if /p
3563 klog 18 0 2472 1376 408 S 0.0 1.1 0:00.3? ssbin/klogd —P sva
3590 dacnon 25 O 1960 428 308 S 0.0 0.3 0:00.00 susr/sbin/atd
3604 root 18 0 233 792 6325 0.0 0.6 0:00.00 susr/sbinscron
3645 per 15 0 5524 2924 1428 S 0.0 2.3 0:00.45 -bash

ety ESctup EScarchlinvert Diree. Sorthu g

Nice ORIl it

_static/ajax-loader.gif

_images/htop_bottom.png
Niceness or the user-space Total amount of virtual memory ~ Resident memory usage or what's
priority of processes. Ranges requested by processes. Not all currently being used by processes.
from -20 (highest) to 19 (lowest.) may be in use.

Process owner. Shared memory used by processes.

1)) NI | VIRT | RES SHR
17391 | j 0 1435M

Command

simplescreenrecor

simplescreenreco

geary Command that launched
/usr/bin/X :0 -au processes.

geary

simplescreenreco

simplescreenreco

simplescreenreco

simplescreenreco Processor time used by
simplescreenreco processes.
simplescreenreco

Process Ids.

NPOOWWWWNOO

QWWWwWwWwwrRFERFW

— 00 00 00 00 C0 00 W = W 00 “°
[cNoNoNoNoNoNo RN N IO

Process state: I
R =runnable. Percentage of CPU

S=Interruptable sleep time processes are A task’s current share of the physical memory.
currently using. This is RES divided by total memory.

Kernel-space priority of
processes. Ranges from
0to 139.

_images/htop_top.png
Number of processors or

Total CPU usage for core 1. Blue are low priority, 80 tasks. 180 threads.
cores. This has 3 cores.

green are userand are kernel threads 4 currently running.

a 10 4

K nn
Load average: 2.64 2.38
Total memory used by

processes in green bars.
Blue and yellow bars are

buffers and disk cache. Average system load for the

last 1, 5 and|15 minute periods. How long the system has been running.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Vanderbilt Astro - Starting Grad School

 		
 MAC 101: An Introduction

 		
 What your MAC should have

 		
 Xcode

 		
 LaTeX

 		
 Vanderbilt VPN

 		
 MAC Time Machine & Backup

 		
 SSH

 		
 SSH-Keys

 		
 SSH Config file

 		
 Python 101 - Anaconda, environments, and more

 		
 Anaconda

 		
 Installing Anaconda

 		
 Managing environments

 		
 Structuring your Project

 		
 Cookiecutter and Folder structure

 		
 Data Science - Cookiecutter

 		
 Personal version - Cookiecutter

 		
 Links and Resources

 		
 Python Packaging - Building your own module and package

 		
 Introduction

 		
 Initial Setup

 		
 Astropy Template

 		
 PyPackage Template

 		
 Resources and further reading

 		
 Machine Learning

 		
 Why machine learning?

 		
 ML algorithms

 		
 Supervised Machine Learning

 		
 Unsupervised Machine Learning

 		
 Papers that have used ML

 		
 Cosmology and Galactic astronomy

 		
 Stellar Astrophysics

 		
 Observational Astronomy

 		
 Vanderbilt PhD Thesis - Template

 		
 Steps to take to write your dissertation

 		
 Downloading Vanderbilt PhD Thesis

 		
 Downloading Vanderbilt PhD Thesis

 		
 Writing the Thesis

 		
 Compiling your Thesis

 		
 Tools you might want to check out

 		
 Introduction

 		
 htop - An interactive viewer for Unix

 		
 htop Explained

 		
 Further Reading

 		
 tmux and screen - Terminal Multiplexers

 		
 Screen

 		
 Tmux

 		
 Crontab

 		
 Whole Tale

 		
 Useful links and Resources

 		
 General

 		
 MAC-related (if applicable)

 		
 Reading Papers

 		
 Giving Presentations

 		
 Paper Management

 		
 Taking Notes

 		
 Collaborations

 		
 Conferences

 		
 General Learning

 		
 Python & Anaconda

 		
 Interesting Python Packages

 		
 Python Packaging

 		
 Code Editors

 		
 Code Structure

 		
 Version Control

 		
 SSH Keys

 		
 LaTeX

 		
 Writing Papers

 		
 Online Presentations

 		
 Data Science

 		
 Machine Learning

 		
 Papers

 		
 Interesting Books

 		
 Jobs and Applications

 		
 Miscellaneous Links

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

